PhD Gallisense

The Cluster of Excellence livMatS develops completely novel, bioinspired materials systems that adapt autonomously to various environments and harvest clean energy from their surroundings. The intention of these purely technical – yet in a behavioral sense quasi-living – materials systems is to meet the demands of humans with regard to pioneering environmental and energy technologies. The societal relevance of autonomous systems and their sustainability will thus play an important role in their development. The research program of livMatS is characterized by highly interdisciplinary collaboration between researchers from a broad range of fields including engineering, chemistry, physics, biology, psychology, the humanities, and sustainability sciences.

The livMats Cluster of Excellence is offering the following PhD position for the project:

Gallisense - Giving materials the ability to sense

Envisaged starting date is January, 1st, 2023

Project description
If a material shall be aware of its surrounding, it must be able to query information about its physicomechanical state. Upon sensing an external load, a material can then respond by changing its physical or chemical structure in order to enforce or adjust its properties. This adaptation requires the capability to sense in the first place. The aim of this project is to provide a robust and scalable approach to empower material self-sensing, i.e., state reporting and state switching by making use of a hydraulic readout system based on Gallium liquid metal microfluidics, an emerging topic in the field of Advanced Microfluidics. This concept will allow the material to “remember” the stimulus, i.e., the applied load. The stimulus has changed something in the material which causes a permanent change to material’s memory. This effectively turns the material into, what is in computer science terms referred as a, a state machine. This project will provide an energy-autonomous, generally-applicable, fully-closed material sensory awareness concept based on a material system state machine thus providing a significant step towards fully-adaptive and autonomous materials.

Candidate profile
You have a Master’s degree in microsystems engineering, electrical engineering, physics, material science or related subjects. Experience in microsystems engineering, manufacturing, Additive Manufacturing (e.g., (stereo)lithography) or related 3D Printing techniques is beneficial. You should have an eexcellent academic track record, should have eexcellent English language skills both in reading and writing and should be be a team player with ambitions. You should be interested in working in an inspiring interdisciplinary and young team with great emphasis on publications and publicity. Depending on the performance of the candidate the PhD degree is generally finished within three years and thus, a hard-working and dedicated personality is a prerequisite.

Please hand in:
• Letter of intent detailing why you are interested in this specific project and how your previous research qualifies you for the project (up to 1,500 words)
• Curriculum Vitae with list of publications (if applicable)
• Certified copies of your university degree(s) with grades (BA and MA certificate / Diploma certificate and transcript)
• Short summary of your master’s thesis (up to 1,000 words)
• Work sample (chapter from recent thesis or journal article, up to 5,000 words)
• Suggestion of two referees with contact details

Your documents will not be returned after the application process. For this reason, please submit copies only. This position is limited to 36 months. The salary will be determined in accordance with TV-L E13. We are particularly pleased to receive applications from women for the position advertised here.

Please send your application in English including supporting documents mentioned above citing the reference number 00002429, Application deadline is October 28, 2022. Application is to be emailed as ONE SINGLE PDF FILE to positions@livmats.uni-freiburg.de.

Direct all scientific questions about the project to Prof. Dr.-Ing. Bastian E. Rapp