
Dr. Anna Westermeier
Plant Biomechanics Group Freiburg, Botanic Garden Freiburg
Project
BioElast – Kinematic Principles and Motion Design in Shape-Shifting Plant Structures
Project description
In my project, which is funded by the Ministry of Science, Research and the Arts Baden-Württemberg, I investigate plants that are able to achieve very fast movements. I am interested in the kinematic principles and functional-morphological and biomechanical characteristics underlying this capacity. My focus lies on analysing the active and/or passive actuation mechanisms enabling the complex global deformation that occurs in carnivorous plants and orchid pollination systems.
Supervisor and dissertation
Prof. Dr. Thomas Speck
Anna Westermeier successfully defended her dissertation in February 2020.
Publications in livMatS
- Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.)*
Carmesin, C. F., Fleischmann, A. S., Klepsch, M. M., Westermeier, A. S., Speck, T., Jansen, S., & Poppinga, S. (2021). Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.). American Journal of Botany. doi: 10.1002/ajb2.1779 - Snapping mechanics of the Venus flytrap Dionaea muscipula*
Sachse, R., Westermeier, A., Mylo, M. D., Nadasdi, J., Bischoff, M., Speck, T., & Poppinga, S. (2020). Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences, 117(27), 16035-16042. doi: 10.1073/pnas.2002707117 - 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement*
Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378(2167), 20190445. doi: 10.1098/rsta.2019.0445 - Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics*
Esser, F., Scherag, F. D., Poppinga, S., Westermeier, A., Mylo, M. D., Kampowski, T., Bold, G., Rühe, J., & Speck, T. (2019, July). Adaptive Biomimetic Actuator Systems Reacting to Various Stimuli by and Combining Two Biological Snap-Trap Mechanics. In Conference on Biomimetic and Biohybrid Systems (pp. 114-121). Springer, Cham. doi: 10.1007/978-3-030-24741-6_10
* Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2193/1 – 390951807