Dr. Max Mylo
Postdoktorand
Exzellenzcluster livMatS @ FIT – Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien
Institut für Mikrosystemtechnik - IMTEK, Albert-Ludwigs-Universität Freiburg
Plant Biomechanics Group Freiburg, Botanischer Garten der Universität Freiburg
Tel.: +49 761 203 95142
E-Mail: max.mylo@livmats.uni-freiburg.de
Projekte
The mistletoe-host interface as model for long-term integrity by damage prevention and repair
In meinem aktuellen Projekt abstrahiere ich die gewonnenen Erkenntnisse über die Funktionsmechanismen (überlagerte Gradienten, redundante Verankerungstrukturen etc.) zur Schadensvermeidung der Europäischen Mistel (Viscum album) und ihrer Verbindung zum Wirt durch FE Simulationen, mit dem Ziel diese in Multi-Materialsystemen mit hohem Langlebigkeitspotential zu implementieren.
Erstbetreuer
PhD Projekt
Abscission and self-repair in biological and artificial materials systems
Im Rahmen eines biomimetischen Bottom-up-Ansatzes ist es mein Forschungsziel, vertiefende morphologische, anatomische und biomechanische Analysen an geeigneten Rollenmodellen durchzuführen. Damit möchte ich exemplarisch von der Bindung, Ablösung und Selbstreparatur biologischer Materialsysteme lernen. Durch die interdisziplinäre Zusammenarbeit mit den Projektpartnern werden wir in der Lage sein, Modellierungen und Simulationen durchzuführen. Sie erlaubt uns zudem, technische Materialsysteme zu entwerfen und herzustellen sowie Materialontologien zu erarbeiten.
Projektergebnis
In meiner kumulativen Dissertation habe ich die Schadenskontrolle im Pflanzenreich untersucht (Speck, Langer, Mylo, 2021). Dies umfasst die Vermeidung mechanischer Schäden und die Bewältigung auftretender Schäden. Als Modellorganismus für die Schadensvermeidung haben wir die hemiparasitische Europäische Mistel (Viscum album) und ihre dauerhafte Bindung an den Wirtsbaum anatomisch/morphologisch (Mylo et al., 2021a) und mechanisch (Mylo et al., 2022a) charakterisiert. Für die Analysen zum Schadensmanagement arbeiteten wir mit zwei Opuntia-Arten (Opuntia ficus-indica und Cylindropuntia bigelovii), welche zu einer Unterfamilie der Kakteen zählen. Diese charakterisierten wir im Hinblick auf ihre Selbstreparatureigenschaften (Mylo et al., 2020) und ihre Fähigkeit, bei geringen mechanischen Kräften Zweige zur vegetativen Vermehrung abzustoßen (Abszission). Hierfür nutzten wir morphometrische Messungen, MRT-Scans, lichtmikroskopische Aufnahmen (Mylo et al., 2021b) und Zugversuche an isolierten Geweben und ganzen Pflanzenorganen (Mylo et al., 2022b).
Link zur Dissertation: https://freidok.uni-freiburg.de/fedora/objects/freidok:231805/datastreams/FILE1/content
Erstbetreuerin und Dissertation
Publikationen in livMatS
- Stereo Camera Setup for 360° Digital Image Correlation to Reveal Smart Structures of Hakea Fruits*
Fischer, M., Mylo, M., Lorenz, L., Böckenholt, L., Beismann, H. (2024): Stereo Camera Setup for 360° Digital Image Correlation to Reveal Smart Structures of Hakea Fruits. Biomimetics, 9 (3): 191. doi: 10.3390/biomimetics9030191 - Digital image correlation techniques for motion analysis and biomechanical characterization of plants*
Mylo, M.D, Poppinga, S. (2024). Digital image correlation techniques for motion analysis and biomechanical characterization of plants. Frontiers in Plant Science, 14, 1335445. doi: 10.3389/fpls.2023.1335445 - Longevity of System Functions in Biology and Biomimetics: A Matter of Robustness and Resilience*
Mylo, M.D., Speck, O.: Longevity of System Functions in Biology and Biomimetics: A Matter of Robustness and Resilience. Biomimetics 8(2): 173. doi: 10.3390/biomimetics8020173 - Conjoining Trees for the Provision of Living Architecture in Future Cities: A Long-Term Inosculation Study*
Mylo, M. D., Ludwig, F., Rahman, M. A., Shu, Q., Fleckenstein, C., Speck, T., & Speck, O. (2023). Conjoining Trees for the Provision of Living Architecture in Future Cities: A Long-Term Inosculation Study. Plants, 12(6), 1385. doi: 10.3390/plants12061385 - Elastic property and fracture mechanics of lateral branch-branch junctions in cacti: A case study of Opuntia ficus-indica and Cylindropuntia bigelovii*
Mylo, M. D., Hoppe, A., Pastewka, L., Speck, T., & Speck, O. Elastic properties and fracture mechanics of lateral branch-branch junctions in cacti: a case study of Opuntia ficus-indica and Cylindropuntia bigelovii. Frontiers in Plant Science, 2947. doi: 10.3389/fpls.2022.950860 - Biomechanics of the parasite–host interaction of the European mistletoe*
Mylo, M. D., Hoffmann, M., Balle, F., Beisel, S., Speck, T., & Speck, O. (2022). Biomechanics of the parasite–host interaction of the European mistletoe. Journal of Experimental Botany, 73(4): 1204 – 1221. doi: 10.1093/jxb/erab518 (Special issue “Mechanical Ecology - Taking Biomechanics to the Field”) - Morphology and Anatomy of Branch–Branch Junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: A Comparative Study Supported by Mechanical Tissue Quantification*
Mylo, M. D., Hesse, L., Masselter, T., Leupold, J., Drozella, K., Speck, T., & Speck, O. (2021). Morphology and Anatomy of Branch–Branch Junctions in Opuntia ficus-indica and Cylindropuntia bigelovii: A Comparative Study Supported by Mechanical Tissue Quantification. Plants, 10(11), 2313. doi: 10.3390/plants10112313 - Advances on the Visualization of the Internal Structures of the European Mistletoe: 3D Reconstruction Using Microtomography*
Mylo, M. D., Hofmann, M., Delp, A., Scholz, R., Walther, F., Speck, T., & Speck, O. (2021). Advances on the visualization of the internal structures of the European mistletoe: 3D reconstruction using microtomography. Frontiers in Plant Science, 2085. doi: 10.3389/fpls.2021.715711 - Plant-inspired damage control – An inspiration for sustainable solutions in the Anthropocene*
Speck, O., Langer, M., & Mylo, M. D. (2021). Plant-inspired damage control–An inspiration for sustainable solutions in the Anthropocene. The Anthropocene Review. doi: 10.1177/20530196211018489 - Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems*
Hone, T., Mylo, M. D., Speck, O., Speck, T., Taylor, D. (2021): Failure mechanisms and bending strength of Fuchsia magellanica var. gracilis stems. Journal of the Royal Society Interface. 18: 20201023. doi: 10.1098/rsif.2020.1023 - Bamboo-inspired tubular scaffolds with functional gradients*
Yin, K., Mylo, M. D., Speck, T., & Wegst, U. G. (2020). Bamboo-inspired tubular scaffolds with functional gradients. Journal of the Mechanical Behavior of Biomedical Materials, 103826. doi: 10.1016/j.jmbbm.2020.103826 - Snapping mechanics of the Venus flytrap Dionaea muscipula*
Sachse, R., Westermeier, A., Mylo, M. D., Nadasdi, J., Bischoff, M., Speck, T., & Poppinga, S. (2020). Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences, 117(27), 16035-16042. doi: 10.1073/pnas.2002707117 - 2D and 3D graphical datasets for bamboo-inspired tubular scaffolds with functional gradients: micrographs and tomograms*
Yin, K., Mylo, M. D., Speck, T., & Wegst, U. G. (2020). 2D and 3D graphical datasets for bamboo-inspired tubular scaffolds with functional gradients: micrographs and tomograms. Data in Brief, 31, 105870. doi: 10.1016/j.dib.2020.105870 - Self-repair in cacti branches: comparative analyses of their morphology, anatomy and biomechanics*
Mylo, M. D., Krüger, F., Speck, T., & Speck, O.. (2020). Self-Repair in Cacti Branches: Comparative Analyses of Their Morphology, Anatomy, and Biomechanics. International journal of molecular sciences, 21(13), 4630. doi:10.3390/ijms21134630 (Special Issue: Plant Biomechanics) - 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement*
Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378(2167), 20190445. doi: 10.1098/rsta.2019.0445 - Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics*
Esser, F., Scherag, F. D., Poppinga, S., Westermeier, A., Mylo, M. D., Kampowski, T., Bold, G., Rühe, J., & Speck, T. (2019, July). Adaptive Biomimetic Actuator Systems Reacting to Various Stimuli by and Combining Two Biological Snap-Trap Mechanics. In Conference on Biomimetic and Biohybrid Systems (pp. 114-121). Springer, Cham. doi: 10.1007/978-3-030-24741-6_10
* Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2193/1 – 390951807