Mitarbeiter*innen
PD Dr. Simon Poppinga
Responsible investigator
Wissenschaftlicher Leiter Botanischer Garten
Technische Universität Darmstadt
Tel.: +49615122340
E-Mail: simon.poppinga@tu-darmstadt.de
Areas 0f Expertise
Plant biomechanics | Carnivorous plants | Biomimetics | Functional morphology | Plant movements
Publikationen in livMatS
- Smart Bioinspired Material-Based Actuators: Current Challenges and Prospects* (early view)
Palacios, A., Chiriatti, L., Poppinga, S., Speck, T., & Le Houérou, V. (2024). Smart Bioinspired Material-Based Actuators: Current Challenges and Prospects. Advanced Intelligent Systems, 2400396. doi: 10.1002/aisy.202400396 - Orchestrated Movement Sequences and Shape-Memory-like Effects in Pine Cones*
Horstmann, M., Speck, T., & Poppinga, S. (2024). Orchestrated Movement Sequences and Shape-Memory-like Effects in Pine Cones. Plants, 3(15), 2078. doi: 10.3390/plants13152078 - Digital image correlation techniques for motion analysis and biomechanical characterization of plants*
Mylo, M.D, Poppinga, S. (2024). Digital image correlation techniques for motion analysis and biomechanical characterization of plants. Frontiers in Plant Science, 14, 1335445. doi: 10.3389/fpls.2023.1335445 - Cross-Sectional 4D-Printing: Upscaling Self-Shaping Structures with Differentiated Material Properties Inspired by the Large-Flowered Butterwort (Pinguicula grandiflora)*
Sahin, E. S., Cheng, T., Wood, D., Tahouni, Y., Poppinga, S., Thielen, M., Speck T. & Menges, A. (2023). Cross-Sectional 4D-Printing: Upscaling Self-Shaping Structures with Differentiated Material Properties Inspired by the Large-Flowered Butterwort (Pinguicula grandiflora). Biomimetics, 8(2), 233. doi: /10.3390/biomimetics8020233 - Plants as inspiration for material-based sensing and actuation in soft robots and machines*
Speck, T., Cheng, T., Klimm, F., Menges, A., Poppinga, S., Speck, O., Tahouni, Y., Tauber, F., & Thielen, M. (2023). Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin 48, 730 – 745. doi: 10.1557/s43577-022-00470-8 - Entwicklung bioinspirierter und selbstformender Orthesen per 4D-Druck*
Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., & Speck, T. (2023). 4D-Drucken für bioinspirierte und selbstformende Orthesen. Orthopädie Technik, 01/23: 40 – 49. - Plants as inspiration for material-based sensing and actuation in soft robots and machines*
Speck, T., Cheng, T., Klimm, F., Menges, A., Poppinga, S., Speck, O., Tahouni, Y., Tauber, F. & Thielen, M. (2023) Plants as inspiration for material-based sensing and actuation in soft robots and machines. MRS Bulletin. doi: 10.1557/s43577-022-00470-8 - The cracking of Scots pine (Pinus sylvestris) cones*
Horstmann, M., Buchheit, H., Speck, T., & Poppinga, S.(2022). The cracking of Scots pine (Pinus sylvestris) cones. Frontiers in Plant Science, 3823. doi: 10.3389/fpls.2022.982756 - Chemonastic Stalked Glands in the Carnivorous Rainbow Plant Byblis gigantea LINDL. (Byblidaceae, Lamiales)*
Poppinga, S., Knorr, N., Ruppert, S., & Speck, T. (2022). Chemonastic Stalked Glands in the Carnivorous Rainbow Plant Byblis gigantea LINDL.(Byblidaceae, Lamiales). International Journal of Molecular Sciences, 23(19), 11514. doi: 10.3390/ijms231911514 - Shapeshifting in the Venus flytrap (Dionaea muscipula): Morphological and biomechanical adaptations and the potential costs of a failed hunting cycle*
Durak, G. M., Speck, T., & Poppinga, S. (2022). Shapeshifting in the Venus flytrap (Dionaea muscipula): morphological and biomechanical adaptations and the potential costs of a failed hunting cycle. Frontiers in Plant Science, 13:970320. doi: 10.3389/fpls.2022.970320 - Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula)*
Durak, G. M., Thierer, R., Sachse, R., Bischoff, M., Speck, T., Poppinga, S. (2022). Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula). Advanced Science, 2201362. doi: 10.1002/advs.202201362 - The Structural and Mechanical Basis for Passive-Hydraulic Pine Cone Actuation*
Eger, C. J., Horstmann, M., Poppinga, S., Sachse, R., Thierer, R., Nestle, N., Bruchmann, B., Speck, T., Bischoff, M., & Rühe, J. (2022). The Structural and Mechanical Basis for Passive‐Hydraulic Pine Cone Actuation. Advanced Science, 2200458. doi: 10.1002/advs.202200458 - The effects of substrate porosity, mechanical substrate properties and loading conditions on the attachment performance of the Mediterranean medicinal leech (Hirudo verbana)*
Kampowski, T., Schuler, B., Speck, T., & Poppinga, S. (2022). The effects of substrate porosity, mechanical substrate properties and loading conditions on the attachment performance of the Mediterranean medicinal leech (Hirudo verbana). Journal of the Royal Society Interface, 19 (188), 20220068. doi: 10.1098/rsif.2022.0068 - Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.)*
Carmesin, C. F., Fleischmann, A. S., Klepsch, M. M., Westermeier, A. S., Speck, T., Jansen, S., & Poppinga, S. (2021). Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.). American Journal of Botany. doi: 10.1002/ajb2.1779 - Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene*
Speck, T., Poppinga, S., Speck, O., & Tauber, F. (2021). Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene. The Anthropocene Review, 20530196211039275. doi: 10.1177/20530196211039275 - Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness*
Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T. & Menges, A. (2021). Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration & Biomimetics, 16: 055002. doi: 10.1088/1748-3190/ac0c8e - Self-Actuated Paper and Wood Models: Low-Cost Handcrafted Biomimetic Compliant Systems for Research and Teaching*
Poppinga, S., Schenck, P., Speck, O., Speck, T., Bruchmann, B., Masselter, T. (2021) Self-Actuated Paper and Wood Models: Low-Cost Handcrafted Biomimetic Compliant Systems for Research and Teaching. Biomimetics, 6(3):42. doi: 10.3390/biomimetics6030042
Editor's Choice - Complexity and diversity of motionamplification and control strategies inmotile carnivorous plant traps*
Bauer, U., Müller, U. K., & Poppinga, S. (2021). Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proceedings of the Royal Society B, 288(1951), 20210771. doi: 0.1098/rspb.2021.0771 - Bio‐Inspired Motion Mechanisms: Computational Design and Material Programming of Self‐Adjusting 4D‐Printed Wearable Systems*
Cheng, T., Tahouni, Y., Wood, D., Thielen, M., Poppinga, S., Buchholz, L., Steinberg, T., Menges, A. & Speck, T. (2021): Bio-inspired Motion Mechanisms: Computational Design and 4D-printing of Self-adjusting Wearable Systems. Advanced Science, 8 (13): 2100411. doi: 10.1002/advs.202100411 - Exploring the attachment of the Mediterranean medicinal leech Hirudo verbana to porous substrates*
Kampowski, T., Thiemann, L. L., Kürner, L., Speck, T., & Poppinga, S. (2020). Exploring the attachment of the Mediterranean medicinal leech (Hirudo verbana) to porous substrates. Journal of the Royal Society Interface, 17(168), 20200300. doi: 10.1098/rsif.2020.0300 - Snapping mechanics of the Venus flytrap Dionaea muscipula*
Sachse, R., Westermeier, A., Mylo, M. D., Nadasdi, J., Bischoff, M., Speck, T., & Poppinga, S. (2020). Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences, 117(27), 16035-16042. doi: 10.1073/pnas.2002707117 - Plant movements as concept generators for the development of biomimetic compliant mechanisms*
Poppinga, S., Correa, D., Bruchmann, B., Menges, A., & Speck, T. (2020). Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integrative and Comparative Biology. doi: 10.1093/icb/icaa028 - 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement*
Correa, D., Poppinga, S., Mylo, M. D., Westermeier, A. S., Bruchmann, B., Menges, A., & Speck, T. (2020). 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philosophical Transactions of the Royal Society A, 378(2167), 20190445. doi: 10.1098/rsta.2019.0445 - Adaptive biomimetic actuator systems reacting to various stimuli by and combining two biological snap-trap mechanics*
Tauber, F., Scherag, F. D., Poppinga, S., Westermeier, A., Mylo, M. D., Kampowski, T., Bold, G., Rühe, J., & Speck, T. (2019, July). Adaptive Biomimetic Actuator Systems Reacting to Various Stimuli by and Combining Two Biological Snap-Trap Mechanics. In Conference on Biomimetic and Biohybrid Systems (pp. 114-121). Springer, Cham. doi: 10.1007/978-3-030-24741-6_10 - Resolving form-structure-function relationships in plants with MRI for biomimetics transfer*
Hesse, L., Leupold, J., Poppinga, S., Wick, M., Strobel, K., Masselter, T., & Speck, T. (2019). Resolving form–structure–function relationships in plants with MRI for biomimetic transfer. Integrative and Comparative Biology, 59(6), 1713-1726. doi: 10.1093/icb/icz051/54978
* Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC-2193/1 – 390951807